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1. INTRODUCTION

1.1. The Background

In a paper published in 1969 Tikhomirov [21] determined the
Kolmogorov widths (see Section 1.2), in the space C([O, 1]) of real
continuous functions on an interval, of the sets

W oo.r = If E C([O, 1]) : fIr-I) is abs. continuous, Ilf,r
) 1100 ~ 1},

r = 1,2,.... In a series of extremely interesting papers Micchelli and Pinkus
generalized and extended Tikhomirov's results. The papers of Micchelli and
Pinkus with which we are most concerned are [12, 13, 14, and 18]. Taylor's
theorem provides a representation of each function fEWoo.r as

f(s) = k(s) + J.I (s - t)'t--
l

jlr)(t) dt,
o (r-l)!

where k is a polynomial of degree not greater than r - 1. The kernel

(s - t):-I
K(s, t) = (r _ I)!

is totally posItive [6]. Micchelli and Pinkus determined the Kolmogorov
widths of sets determined by integral operators the kernels of which satisfy
certain "total positivity" conditions. The integral operators which they
considered in [12, 13, 141 act either from L 00([0, 1]) into L q([O, 1])
(1 ~q~ 00) ([12,14]) or from U([O,I]) (1 ~p~ 00) into L I ([O,I])
([ 13, 14]). In [14] (and in passing, in [12]) they related the Kolmogorov
widths to best approximations to the integral operators by operators of given
finite rank.
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It is the purpose of the present account to show that all the results can be
described systematically, and in a unified way, in terms of a restricted finite
rank approximation to integral operators. This is achieved by considering a
more general situation for which the principal "total positivity" condition
takes a self-dual form (Section 2.1 Condition (C 1)). In this situation the
results for integral operators T: LP -+ L I are related precisely, by duality, to
those for integral operators T: L 00 -+ L q.

Tikhomirov [21], developing certain results of his first celebrated paper
[20] on Kolmogorov widths, also determined all the Kolmogorov widths, in
the space C of real 2n-periodic continuous functions, of the sets

Woo.r = {f E C: f(r-I) abs. continuous, Ilf(r) 1100 ~ 1f,

r = 1, 2,.... The present exposition is partly an outcome of examining the
question whether any of the results developed by Micchelli and Pinkus in a
non-periodic context has an analogue which generalises Tikhomirov's
periodic result. The self-dual total positivity condition emerged from this
examination and is precisely what is needed. However the theorem for the
periodic situation which emerges is-relative to the non-periodic results-a
rather special and restricted one concerning convolution operators. The only
example we can give to which the result applies is that which is implicit in
Tikhomirov's discussion-though we expect that other examples can be
obtained theoretically by convolution with Cyclic Polya Frequency functions
(see [6 D.

This paper was first written before the author had seen the paper by
Pinkus [18] which also considers the periodic situation. There is a non­
trivial intersection between that paper and Section 3 of this one: the case
a = 0 of Section 3 is contained in [18]. It is possible (or likely) that a unified
treatment of the results of Section 3 and [18] could be developed. The
present paper has been revised a little in the light of [18]: by developing one
of the arguments of [18] and by giving effect to [18, Remark 3.1] it is shown
that one of our original hypotheses (the conclusion of Theorem 3.1.1) is a
consequence of the others. In revising the paper we have also added an
abstract duality theorem (1.2.2).

The literature of n-widths is now extensive. Amongst those papers whose
concerns are close to those of this paper there are those by Makovoz [11]
and Ligun [9] which discuss n-widths in the periodic situation and use quite
different methods, one by Micchelli and Pinkus [15] and a recent paper by
Oyn [4] which develops some of the results of Micchelli and Pinkus in
different directions; the latter two papers are explicitly concerned with finite
rank approximations to integral operators.

In the remainder of the introduction, Section 1.2, the necessary definitions
which relate to widths and finite rank approximation are formulated in an
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abstract context. The main non-periodic results are described in Section 2.1.
A more precise description of their relation to the results of Micchelli and
Pinkus is given at the end of Section 2.1. Section 2.3 is concerned with the
"immediate" consequences of the total positivity conditions. Main Theorem
2.3.6 of this section can be described as a theorem of "variation diminishing
type." Such theorems are discussed at length in [6 J. The techniques and
arguments used here are essentially straightforward extensions of those in
[14 J. They appear to be efficient; they apply with minor exceptions and with
only notational variations to both the non-periodic and the periodic
situations.

The heart of the non-periodic discussion in [21] is a variational problem.
In [14 J there are two. Section 2.4 is concerned with a common extension of
those problems, and the development draws upon both [21, 14 J. However.
there are two cases which require some separate discussion. One relates to
L 00([0, 1]) and the other to U([O, 1]) for 1 ~ q < 00. In the former case the
discussion is of a slightly different nature to that in [21, 14 J and the related
paper [12 J. At this point the general results relating to L 00([0, 1]) fail to
capture the entire information given by Tikhomirov's argument in the
particular case considered by him.

1.2. The Abstract Situation

Let E and F be normed linear spaces. All the spaces with which we will be
concerned are real, but the general definitions of this section apply equally to
complex spaces. Let SE(E, F) denote the set of bounded linear operators of E
into F.

We begin with some definitions which are now standard. If T E Y'(E, F)
then, for each non-negative integer n,

an(T) = inf{11 T - T'II : T' E ~(E, F), rank T' ~ n}.

In the terminology of Pietsch [16J, (aiT))n;;.o is the sequence of approx­
imation numbers of T. If T' E !/(E, F), rank T' ~ nand

II T - T' II = an(T)

we will say that "T' is extremal for an(T)'"
If x E F and L S; F then the distance of x from L is

d(x, L) = dF(x, L) = inf{llx - yll : y E L}.

If X S; F then the deviation of X from L is

15(X, L) = 15F (X, L) = supjd(x, L) : x E Xf.
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The Kolmogorov n-width of X in F (originally defined in [7]) is

dn(X, F) = inf{I5(X, L) : L a subspace of F, dim L ~ n}.
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For any normed linear space E let E I denote the closed unit ball
{xEE:llxll~ 1} of E. If TEY?(E,F) the Kolmogorov numbers [16] of T
are defined by

The sequences of approximation numbers and Kolmogorov numbers of an
operator are examples of s-number sequences which were introduced and
studied by Pietsch [16].

In order to discuss restricted finite rank approximation to certain integral
operators we require extensions of these definitions. Let M a be a subspace of
F of finite dimension a and let N b be a subspace of the dual E* of E of finite
dimension b. Then Nt = {x E E : (x, f) = 0 for all f E N b } is a closed linear
subspace of codimension b in E. For T E Y?(E, F) and n ~ a define

an(T;Ma,N/;)

= inf/II T - T'II : T' E Y?(E, F), dim T'(N;) ~ n,

and

kn(T; M a, N/;) = dn(Ma + T(N/; n E 1), F).

Thus an(T; {O}, E) = an(1") and kn(T; {O}, E) = kn(T).
In the situation which will be considered the equality

aiT; M a, N/;) = kn(T; M a, N/;)

M C T'(Nl-)}a - b'

will hold. The next lemma concerns relations which hold generally.
Statements of the form "P is extremal for Q" will be made with their natural
meaning.

Let J:Nt-+E be the inclusion mapping, and let n:F-+F/Ma be the
quotient mapping. Then nTJ E Y?(Nt; F/Ma) is the composite

N/;----:!...c.E~F~F/Ma·

1.2.1. LEMMA. (i)

an(T; M a, Nt) ~ an_a(nTJ) ~ kn_a(nTJ) = kn(T; M a, Nt).

(ii) If, for some n ~ a, an(T; M a, N/;) = kiT; M a, N/;) and T' is
extremal for an(T; M a, Nt) then nT'J is extremal for an_a(nTJ) and the
sub~pace T'(N/;) is extremalfor kn(T; M a, N/;).

The proof involves only straightforward calculations.
The final result of this section is a duality theorem.
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1.2.2. THEOREM. If dim E ~ n + b, dim F ~ n + band T E !/(E, F) is a
compact linear operator then

an(T; M a, N;) = an_a+b(T*; N b, M;).

Proof This result in the case in which M a = {Of and Nb = {Of is
attributed by Pietsch [161 to Hutton; all the elements of a proof are
contained in [8, pp. 33-341.

The theorem will follow from the three inequalities

an(T;Ma,Nj;) ~ an_a+b(T*;Nb,M~)~ an(T**;Ma,R;) ~ an(T;Ma,N;).
(I) (2) (3)

It is convenient here to identify E and F with their canonical images in E* *
and F** and M a (which is of finite dimension) with its second anihilator
(M~)-L in F**. The anihilators of Nb in E and E** are denoted by Nt and
R;, respectively.

Consider the mappings

and

where S E !/(E, F), M a~ S(N;) and dim S(N;) ~ n. There are
isomorphisms (FjMa)* ';;!;M; and (Nt)* ';;!;E*jNb. Therefore

rank(n'S*J') = rank(nSJ)* = rank nSJ = dim S(Nj;) - a ~ n - a

and

dim S*(M~) = rank(n'S*J') + dim S*(M~) n Nb

~ n -a + dim S*(M~)nNb'

Now

dim(ker s*)n M~ = dim M~ - dim S *(M,;)

= dim F* - a - dim S*(M~)

~ dim F- n - dim S*(M~)nNb

~ b - dim S*(M~) n N b.

It is now easily shown that for any e > 0 there exists S' E !/(F*, E*) such
that IIS*-S'II <e, Nb~S'(M~) and dimS'(M~)~n-a+b. Then
IIT*-S'II~IIT*-S*II+e=IIT-SII+e. This proves inequality (1). If
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dim E ~ n + b then dim E* ~ (n - a +b) + a. Inequality (2) follows by
applying (1) to an-a+b(T*; Nb, M;) in place of an(T; M a, Nt).

Now suppose that S E f//(E**, F**), M a c;;. S(Nt) and dim S(Nt) ~ n
and let e > O. Then II T - SIEII ~ II T** - SII and dim S(Nt) ~
n - (a - dim(S(Nt)n M a». Also

dim(ker S n Nt) = dim N; - dim S(N;)

~ dimE - (n +b) + (a - dim S(N;)nMa).

Consequently there exists S' Ef//(E,F**) such that IISIE-S'II < e and
M a c;;. S'(Nt), dim S'(N;) ~ n. Thus II T- S'II ~ II T** - SII + e.

The operator T is compact so there exists a finite e-net {Yk = TXk:
k= 1,...,m} for T(E I ). Let D=sp(S'(E)U{Y"...,Ym})' Then there exists
P: D -+ F such that IIDII ~ 1 + e and Py = Y for Y E D n F ([8, l.e.60J). Let
S" = DS'. If x E E. then, for some j, II Tx - TxJ ~ e and

II Tx - S"xll ~ e + II Tx) - S"xll

= e + IIDTxj - DS'xl1

~ e+ (1 + e) II TXj - S'xll

~ e + (1 + e)(e + IITx - S'xll)

~ 2e + e2 + (1 + e) II T - S'II.

Therefore II T - S"II ~ 3e + 2e 2 + (1 +e) II T* * - S II. Inequality (3) now
follows.

2. INTEGRAL OPERATORS BETWEEN LP SPACES

2.1. Statement of Principal Results

Henceforth linear spaces will be real and functions will be real-valued. The
discussion in the non-periodic situation will be concerned with a continuous
kernel K E C([0, 11 X [0, 1]) and functions k ....., ka and g" ..., gb in
C([0,1]). The spaces M a and N b will be Ma=sp{k"... ,ka } and
Nb=sp{g ..... , gb}' We will write

and refer to % as "a system." It may happen that a = 0 or b = O. We can
indicate that b = 0, for example, by writing % = (K; k. ,..., k a ; 0). To each
kernel K and system % = (K; k. ,..., ka; g ....., gb) there are transposed kernel
and system defined by

640/34/1-4

K'(s, t) = K(t, s), %' = (K'; gl"'" gb; kl, ..·,ka )·
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If K and G are two kernels andfis an integrable function then we will use
the notations K * G, K * f and f * K, defined by

.1

(K * G)(s, t) = I K(s, u) G(u, t) du,
• 0

.1

(K *I)(s) = I K(s, t) f(t) dt,
• 0

f* K=K' *1

The space UCla, bl) (I <. p <. (0) will be denoted briefly by U and the
norm of fE U by Ilfllp • Note that in the notation of Section 1.2 the closed
unit ball of, for example, L 1 is denoted (L 1),. If I <. p <. 00 then p' will
denote the conjugate index given by lip + lip' = 1.

If K is a continuous kernel then for each p, q with I <. p, q <. 00 there is
an integral operator

defined by TKf = K *1 We will denote by IKlp,q the mixed norm of K
associated with this operator. Thus, if I < p <. 00 and I <. q < 00

IKl p.q= ({ 0: IK(s, tW' dt) q/p' dS) IN.

If p = I or q = 00 then suprema occur in place of integrals in the formula
defining IKlp,q' (This is not the standard use of the subscripts p, q in IKlp.q,
and, in particular, not the use of [14 ].) The operator norm of TK : LP -+ U
will be denoted II TKllp,q' For reference we state an elementary fact as a
proposition

2.1.1. PROPOSITION. II TKII p.q<. IK Ip,q, and equality holds in the case
q= 00,

The principal result concerns approximations to K by finite rank kernels
in the sense of I . loo,q and restricted finite rank approximations to both TK :

L 00 -+ L q and TK ,: L q' -+ L I. We make the following definitions:

an(%; 1·lp,q) = inf{IK - Hlp,q: dim(H * (N~nU» <. n, Ma s;::: H *Ntl,

an(%; II . IIp,q) = an(TK ; Ma, Nt n U),

kn(%; p, q) = dnCMa + K * (Nt n (U)I)' L q) = kn(TK; Ma, N~ n LV),
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where TK denotes the integral operator in Y'(LP. L q) and Nt now denotes the
annihilator of Nh in L I.

The following notation was used in [14]. Let

If TEA m then it is sometimes (but in Section 2.4 not) convenient to put
To = 0 and Tm+ 1 = 1. The greek letters ~ and T. used without subscripts. will
be reserved for points of some IR m with coordinates increasing, that is, points
of the form T= (Tl' ...• Tm) with T1 ~ T2 ~ ... ~ Tm. If TEA;;;, the closure of
Am in IR m

, then h
T

will denote the step function defined by

hT(t) = (_1)1

=0

for Ti < t < Ti + 1 and i = 0, 1,..., m.

for t=T i and i=O, 1,...,m+ 1.

It is convenient to observe at this point that

.1

(K * hT)(s) = )0 K(s. t) hT(t) dt

m ~'t, .1

= 2: 2(-1)1-1) K(s,t)dt+(-l)m) K(s,t)dt.
i= 1 0 0

Note also that if TEA;;; then hT = ±hT , for T' in some Au, a ~ m.
A major step in the development of the results which concern us was the

introduction by Tikhomirov [21] of a certain variational problem. In the
present situation we define. for m~ b,

The Hobby-Rice theorem (see [5. 17] and Remark 2.2.(1)) includes the
assertion that {T E A;;;: hy E Nt} is non-empty if m ~ b. Section 2.4 is
concerned with the determination of a function ko+ K * hTo which is
extremal for em(%, q).

The principal condition under which the results will hold is a total
positivity condition on the system % = (K; k l ,..., ka ; gl ,..., gh)' An extension
of the notations of [61 and [141 is required. If a, P, p and a are non-negative
integers such that a + a = P+ P then

will denote the determinant
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0 0 gi,(r\) gi,(ro)

b

0 0 giB(r l ) giB(rO )

kj,(~I) kjJ~I) K(~1' r l ) K(~l' ro)

kj,(~p) kjJ~p) K(~p, r 1) K(~p, ro)

We can allow, for example, fJ = 0 and write

In the notation of [6]

The main condition on systems c% which enter into the discussion are
conditions (CI) (a "total positivity" condition), (C2) (referred to in [14] as
a "non-degeneracy" condition) and (C3). However, when b *" 0 the full force
of (C2) is invoked at only one point in the argument. Conditions (C4), (C5)
and (C6) are formulated in order to indicate precisely what the proofs
require.

In the statements of the conditions p and a are integers such that p - a =
a- b~ O.

Condition (CI(a + a)). If ~ E A p and r E A o then

.x ( I, , b; ~I , ••• , ~p ) ~ O.
I, , a; r 1 , ... , r o

Condition (Strict CI(a +a».
If 0 ~ ~1 < ... < ~p ~ I and 0 ~ r 1 < ... < r 0 ~ I then

% (I, ,b; ~I"'" ~p) > O.
I, , a; r 1 , ••• , r o

Condition (C2(a +a)). If r E A o then the functions k 1 , ... , ka , K(·, r 1),... ,

K(·, ro) are linearly independent.

Condition (C3). If r E A b then

_(1,...,b; 0 )
,Jr = det(gi(rj » *" O.

0; rl, .. ·,rb
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This means that the functions gp... , gb satisfy the Haar condition on the
open interval (0, 1), and therefore form a weak Chebyshev system. If b =°
Condition (C3) is to be interpreted as vacuous.

The next condition is weaker than (C2) if b"* °and at all but one point of
the argument is adequate.

Condition (C4(a +a». If r E Au and a w ., aa' /31"'" /3u are coefficients,
not all zero, such that

then

u

'\' /3.g(r.) = °_ J J

j=1

for all g E N b

a u

I aJkj +2.:: /3jK(., rj )"* 0.
j=l j=l

Conditions (C3) and (C4(a +a» are related to the next condition.

Condition (C5(a + a». If r E Au then there exists ~ E A p such that

Jr (1, ,b; ~I , , ~p) "* 0.
1, ,a; rl, ,ru

Finally, weaker than (C5) is

Condition (C6(a + a». There exist r E Au and ~ E A p such that

Transposed conditions. If the transposed system.%' satisfies (C 1(a + a))
we will say that .% satisfies (C1 '(a + a». Similarly with the other con­
ditions.

Extended conditions. In [14 J it is required that (C2) or (C2') should
extend to one of the end points of the interval [0, 1]. The extended condition
is not essential to the argument. However, when it is satisfied additional
information can be obtained. So we formulate

Condition (Ext C4(a +a»). As (C4(a +a» but with "r E Au" replaced
by "0 < r l < ... < ru ~ I." (Systems for which the condition (C4(a +a»
extends to the left-hand end point of [0, 1J can be accommodated by a
change of variable.)

Some of the relations between these conditions will be stated as a
proposition.
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2.1.2. PROPOSITION. (i) (C2(a + a)) ~ (C4(a + a».

(ii) (C3) and (C4(a +a» ~ (C5(a + a» ~ (C6(a +a));
(C5(a + b)) ~ (C3); (C5(a +a)) ~ (C4(a +a)).

(iii) (Strict C1(a + a» ~ (CI(a +a» and (C5(a +a)).

The proof of the first part of (ii) is elementary but perhaps not trivial
linear algebra.

Blanket conditions. The preceding conditions are formulated in such a
way that they will apply with minimum modification to the periodic situation
discussed in Section 3. For the non-periodic situation it is convenient to for­
mulate

Condition (CI). ,% satisfies (CI(a +a)) for all (J ~ maxlb, I f. We can
use (C2), (C4), etc., in a similar way.

Finally we must note that if a = b = °then (C I) is the condition that K be
totally positive, and (Strict C1) the condition that K be strictly totally
positive.

2.1.3. EXAMPLES. (I) The system

(

( )
r- I

'_ s-t +. r-I.
ff - (r-1)!' I,...,s ,0)

satisfies conditions (C1), (C3) and (Ext C2 ' ), it satisfies condition (C2)
extended to the left-hand end point of [0, 1]. Tikhomirov's paper [21] is
primarily concerned with knC%; 00, 00) for this system.

(2) It can be shown that with a suitable choice of signs depending
upon r, the system

, (S-t):-I r-I r-I)
% = ± (r-I)! ; 1,... ,s ; ±1,..., ±t

satisfies conditions (C I), (C3), (C3'), (Ext C2 ' ) and condition (C2) extended
to the left-hand end point of [0, I].

(3) The kernel

K(s, t) = s(1 - t),

= t(l - s),

°~ s ~ t,

t ~ s ~ 1,

is totally positive. In this case the system ,!r = (K; 0; 0) satisfies the prin­
cipal conditions of Theorems 2.1.4 and 2.1.5, but it does not satisfy the
extended conditions and evades the requirements of [14].
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(4) Further examples are provided by Green functions and eigen­
functions of certain differential operators (see [6, Chap. 6]).

It is now possible to summarise the results in two composite theorems.

2.1.4. THEOREM. Suppose that the system % satisfies conditions (C1),
(C3), (C4) and (C4'). Then for each integer m) b there exists ko E M a • an
integer a with b <a <m, and r O E A a with hTo EN/;. such that

(i) Po = ko+K * hTo is extremal for em(J, q),

(ii) Po has precisely p = a - b + a zeros in (0, 1) at the points of some
~o = (~~ ,..., ~~) E A p and

.Y/ (1,...,b; ~~ ,..., ~~ ) °
./7 0 0 > ,

1,... ,a; rl,...• r a

(iii) in the case that q = ex) there are p + 1 points of [0, 1] at which Po
attains its bound II Po II 00 with alternating sign.

If 1<q < ex) then em(%, q) < em-l%, q) for m) b + 2. If 1~ q < ex)

and jf also satisfies (Ext C4) then em(%' q) < em _1(%' q) for m ) b + 1.
If %' also satisfies condition (Strict C 1) then em(%, ex) ) < em _I(%, ex) )

for m) b + 1.

This theorem is essentially a summary of Section 2.4. It is given by
Theorems 2.4.2, 2.4.3, 2.4.5 (with 2.3.6) and Lemma 2.3.7.

2.1.5. THEOREM. Suppose that the system % satisfies conditions (Cl),
(C3), (C4) and (C2'). Suppose that 1<q <ex) and n) a. Then

an(Jf';I·loo,q)=anCJf;II·lloc..q)=kn(.%'; ex),q)=en-a+b(%,q)·

Let po. r O E A a (b <a ~ n - a + b), ~o E A" (p = a - b +a) be as in
Theorem 2.1.4 (applied to m = n - a + b). Then the kernel H o defined by

% (1, ,b; ~~, ,~~,s)

H () ()
1, , a; r~ , , r~, t

o s, t = K s, t - 0 0

% (1, ,b; ~1'''''~P)
1, , a; r~ ,... , r~

is extremal for an(%; I . loo,q), and the integral operator THo E !/(L 00, L q) is
extremal for ai%; II . 1100,q)·
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Let L o be the subspace
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L o= t~ ajkj + it/jK(., rJ): jt/jg(rn = a for gE Nbl

of C([O, 1]). Then L o is of dimension p and interpolates at the points of ¢'O =
(¢'~ ,..., ~); let To: c(I0, 11) ~ L o be the corresponding interpolation operator.
Then THQ \ N;:=: To(TK \ Nt) and this operator is extremal for
an(TK IN;; Ma, N;); the subspace L o is extremal for kA%; 00, q).

Suppose that the systemY also satisfies conditions (C3') and (C2). Then

an-a+I1(,%'; II ·llq ',I) = kn_a +l1(%'; q', 1) == en- a+I1 (%, q}.

Let L~ be the subspace

of C([O, 1D. Then L~ is of dimension a and interpolates at the points of r O
:=:

(r~ ,..., r~); let T~ : c( [0, 1J) ~ L~ be the corresponding interpolation operator.
Then THo is extremal for an a+l1(%'; If· [lq',I)' The operator THo 1M;;:=:
TMTK IM;;) and is extremal for an-a+l1(TK IM;;; Nil' M;;). The subspace L~

is extremal for kn--0 +11(.Y'; q', 1).

Outline of Proof The first assertion of the theorem follows from a
succession of inequalities:

an(.%; I· \:q) ~ an(Jf; II, Ilx.q)
~ kn(JY; 00, q)

;? en _ a + I1 (Jr, q)

:=: II Pollq

:=: IK - Holoo,q
;? ap(%; I . Iw.q)

;? an(%; 1·lx.q)·

( I)

(2)

(3)

(4)

(5)

(6)

(7)

Inequality (l) is by 2. Ll. Inequality (2) is by 1.2.1. Inequality (3) is
Theorem 2.2.1. Inequality (4) is by choice of Po (Theorem 2.1.4). Ho is well­
defined by 2.1.4(ii). Inequality (5) is by 2.3.8(iv}. Inequality (6) is by 2.3.80)
and (ii) which assert that the kernel Ho satisfies the defining conditions of
ao(%; I . \,,,,,q). Inequality (7) is because p ~ n. It follows that all the
inequalities are in fact equalities. The properties of Ho, THo' L o and
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To(T
HO

INt) which are asserted now follow simply from 2.1.1, 1.2.1 and
2.3.8.

Now suppose that the system % also satisfies conditions (C3') and (C2).
There is a succession of inequalities:

Gn-a+b(%'; 11·llq',I) ~ k n- a+b(%"; q', 1)

~ en - a + b(%, q)

= IK - Holro,q

~ II TK - THoll:o,q

= II TK , - THOllq',1

~ Ga(f'; II ·llq',I)
~ G n - a +b(%"; II, Ilq'.I)·

(8)

(9)

(10)

(11 )

(12)

(13 )

(14)

Inequality (8) is by 2.1.1. Inequality (9) is Theorem 2.2.3. Equality (10) is
(4) and (5) above. Inequality (11) is by 2.1.1. Equality (12) is an elementary
duality result. Inequality (13) is by Theorem 2.3.8 applied to the transposed
system %' (this step requires (C3') and (C2». Inequality (14) is because
a ~ n - G +b. It follows that there is equality throughout. The extremal
properties of H~, THo' L~, etc., follow simply.

We remark that the equality

is essentially a special case of Theorem 1.2.2 (the case q = 1 requires an
appeal to symmetry). Thus the first part of the theorem, together with
Theorem 1.2.2, allows us to bypass inequalities (8) and (9) and so obtain
most of the theorem without the use of Theorem 2.2.3.

The relation of these results to those of Micchelli and Pinkus [12, 13, 14]
will be described using the terminology of this paper. That part of [12]
which relates to integral operators can be described as being concerned with
k n CJ7; 00, (0) and Gn(%, 00, (0) in situations in which b = O. The paper
[13] is primarily concerned with k n(%; 1, 1) in situations in which b = 0 (or,
one can say, with kn(Jr'; 1, 1) when G = 0). The introduction of the
subspaces Nb unifies these results. The case q = 00 of Theorem 2.1.4
contains both [12, Theorem 7.1] and [13, Theorem 2.1], but the proof is of a
different nature. The paper [14] is concerned with kn(f~ 00, q) (b = 0) and
k n(%'; q', 1) (G = 0) but in that paper these are related to Gn(%; 00, q) and
Gn(%'; q', 1) only when G = b = O. Theorem 2.1.5 (together with Theorem
2.1.4) contains a major part of [12, Theorem 7.2; 13, Theorem 2.2] and
essentially all of the results of [14] apart from those which are concerned
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with Gel'fand widths of sets. (The results for Gel'fand widths can also be
extended and incorporated.)

Finally we remark that Tikhomirov's conclusions [21 J imply that. for the
system

( ) r- I )" S - t + r-I
% = ( (r _ I)! ; 1,..., s ; 0 ,

em(%, (0) < em -I (% , (0) for m > r. This conclusion escapes Theorem 2.1.4.

2.2. Applications of the Borsuk-Ulam Theorem

The Borsuk-Ulam antipodal mapping theorem states that if ({l: sn ---+ IR n is
a continuous and odd mapping of the euclidean n-sphere sn into the
euclidean space IR n then 0 E ({l(sn). The theorem was first used in the exact
determination of Kolmogorov widths by Tikhomirov [20 J. In fact the deter­
mination of Kolmogorov widths and the Borsuk-Ulam theorem are
inseparable (see [2]). It is convenient to use here a set-valued version of the
theorem due to Day [3 J (it can also be proved in an elegant way using the
methods of Browder [1, cf. Theorem 4]):

Let ({l be an upper semi-continuous non-empty compact convex set-valued
mapping of sn into IR n such that ({l( -x) = -({l(x) for all x E sn-, Then there
exists x E sn such that 0 E ((l(x).

In the two theorems of this section Jr is a system as in Section 2.1, but no
conditions are imposed on it.

2.2,1. THEOREM. For each q. I ~ q ~ 00, and each integer n ) a

Proof Let 0 = n - a + b. First we introduce a mapping'll: sa ---+ L CfC

which is by Pinkus ([17J, see also [14]) out of Hobby-Rice [51. If

let to(z)=O and ti(Z)=L.~=IZJ for i= 1,... ,0+ 1. Define 'II(z)EL'N by

'II(z)(t) = sgn Zj for tE(tj_l(z),tj(z)) and j= 1..... 0+ 1.

Then 'II is an odd mapping of sa into the unit ball (L OC)1 of L oc, It is
continuous with respect to the L I-norm on LX'. Furthermore, for each
z E sa, 'II(z) = ±hy for some rEA;;.

Let L be any (n - a)-dimensional subspace of the quotient space L Q/Ma

and let P be the set-valued metric projection of L Q/Ma into L, that is, P(x) =
\yEL: Ilx-yll=d(x,L)f for each xELQ/Ma • Then P is an upper semi-
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continuous non-empty compact convex set-valued mapping and it is odd. Let
(jJI be the set-valued mapping which is the composite

The composite TKljI is continuous and so (jJI is upper semi-continuous. Now
define a set-valued mapping (jJ of sa into IR b X L ~ IRa by

The mapping (jJ satisfies the conditions of the set-valued version of the
Borsuk-Ulam theorem. Thus there exists Z E sa such that ljI(z) E Nt and
oE (jJ I (z). This latter condition means that

Therefore for some ko E M a

This proves that

But for some rEA;, h
T

= ±ljI(z) E Nt, so

The theorem now follows.

2.2.2. Remarks. (1) The argument above essentially contains Pinkus's
proof of the Hobby-Rice theorem. In the case n = a it yields the conclusion
that h

T
E Nt for some rEA b' This is the consequence of the Hobby-Rice

theorem to which we appealed when defining em(%, q) in Section 2.1.

(2) The set-valued version of the Borsuk-Ulam theorem can be
avoided. The image (nTKljI)(sa) is separable. Introduce an equivalent strictly
convex norm III ·111 on the separable space E = span(L U (nTKljI)(sa)) s;
L q / Ma' The metric projection p.: E -+ L with respect to the norm
II . II + [; III . III is point-valued. Apply the Borsuk-Ulam theorem itself and
select a cluster point as e -+ O.

2.2.3. THEOREM. For each q, 1~ q ~ OCJ and each integer n ~ b
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Proof Let E = L q' and F = L I. Denote the integral operator

by TE ff(E, F). The conjugate mapping T* E ff(F*, E*) is the composite

where J is the canonical embedding. First note the

PROPOSITION. [fllf E U then IIJlIf 1(M~nE)11 = dL.(lIf, Ma ).

There are two cases to consider. If 1 < q ~ 00 then J is an isometric
isomorphism, (M~ n E).l = JMa because dim Ma < 00, and

If q = 1 then E ~ (L q)* and the proposition follows from the fact that
(L q/Ma )* ~ (M~ n E).

Now let L be any n-dimensional subspace of F such that Nb ~ L. If
fEM~nE, andgENb then

dF(g + Tf, L) = dF(Tf, L)

= sup{ ct>(Tf) : ct> E (L .1)[ ~ F* f

= sup{(T*ct»(f): ct> E (L.l)tl.

Now, by taking the supremu over all f E M: n E I and g E Nb , and by
appealing to the Proposition, we obtain the equalities

(jF(Nb + T(M;;- n E[), L) = sup{1I T*ct> 1(M; n E)II : ct> E (L .l)[}

= sup{d(TKqI, Ma ) : qI E (L .1)[ ~ L OC}.

Now by the Hobby-Rice theorem (Remark 2.2.2( 1)) there exists ~ E A;;
such that h! E L.l ~ N;n L 00. Therefore

The conclusion of the theorem now follows.

2.3. Consequences of the Total Positivity Conditions

This section is mainly concerned with extensions to well-known results in
the theory of total positivity. The arguments are basically those of [14]. The
extensions achieve some gain in efficiency. Pairs of theorems are replaced by
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single theorems. In particular Theorem 2.3.6 includes both [14, Lemma 3.1 ]
and [14, Lemma 3.2]. The discussion also applies with trivial changes
(specified in Section 3) to the periodic situation. The final Theorem 2.3.8 is
independent of the rest of the section.

A basic procedure in the theory of total positivity involves the approx­
imation of totally positive kernels by strictly totally positive ones. In the
present situation the procedure requires an extension of "the basic
composition formula" [6].

If % = (K; k( ,"" ka ; g( ,..., gb) is a system and G is a kernel we define
systems ,% * G and G *J' by

Jr' * G = (K * G; k 1'"'' ka ; g I * G,... , gb * G),

G *.%' = (G * K; G * k l ,..., G * k a ; gl ,..., gb)'

2.3.1. Composition formulae

(% * G) (1, , b; ¢I ,..., ¢p )
1, , a; T1'"'' Ta

J
.. ,. J' CYf (1,...,b; C;I ,... , C;p ) ( (I ,..., (a )

Jl G d(1 ... d(a'
1,... , a; (I ,..., (a T1"'" Ta

~1<~2<'" <~o

(G *,%) (1, ,b; ¢I ,..., C;p )
1, , a; T1"'" Ta

.
1' 1' G (¢I"",¢p)Jf,(I, ,b; (1"",(p)d(I".d(p.

(I'''''(p I, , a; T1, ...,Ta
~1<~2<"'<~o

Proof If a = 0 then the first identity is contained in the basic
composition formula. The proof of the first identity involves three steps. (l)
Replace the determinant

,Jr ( 1, , b; ¢I , , ¢p)
1, , a; (I , , (a

on the right by its Laplace expansion by its first a columns. (2) Interchange
sum and integral. (3) Apply the basic composition formula (the case a = 0)
to each term of the sum. The resulting sum is the Laplace expansion of the
left-hand side by its first a columns.

The second identity can be obtained by transposition from the first.
We can now introduce what is sometimes described as the "smoothing

process" (see [6, p. 103 D.
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2.3.2. Notation. Let G"" 11 * 0, be the kernel defined by

1 (1 (S-t)Z')G",(s, t) = . r-;;: exp - - -- .
111lv 2n 2 11

For any system .% = (K; k I"'" k a ; g I"'" gb) let

K("') = G * (K * G )
'" '" '

,%(",) = G", * (% * G",).

For each 11*0 the kernel G", is strictly totally positive (see [6]) and (G""
11---+ 0) forms an approximate identity (in a sense to be made precise) for the
algebra of continuous kernels. The properties of G'" which will be required
will be listed in the following catch-all theorem.

2.3.3. THEOREM. (i) For 11 * 0 the mapping 11---+ G", E C([O, 1] X [0, 1])
is continuous with respect to uniform convergence of continuous kernels.

(ii) If fE C([O, 1]) then II G", * fllco ~ Ilfll"" and (G", * I)(s) ---+ f(s) as
11 ---+ 0 uniformly for s in each interval [~, 1 - ~1with ~ > O. If s = 0 or 1 then
(G", * I)(s) ---+ 1f(s) as 11---+ O.

(iii) Iff E C([O, 1]) and f: >0 then there exists 110 >0 such that

minlf(s), Of - f: ~ (G", * I)(s) ~ max{f(s), O} + f:

for all s E [0, 1] and all 11 E (0,110)'

(iv) If K E C([O, I] X [0, I]) then K * G",---+ K as 11---+ 0 uniformly on
each rectangle [0, 1] X [~, 1 - ~l with ~ > O. The kernel K("') converges
uniformly to K as 11---+ 0 on each square [~, 1 -b] X [~, 1 -b] with ~ > O.

(v) If the system X satisfies (Cl(a +0» and (C6(a +0» then for
each '1 * 0 the system %(",) satisfies (Strict Cl (a +0».

Proof Property (i) is obvious. Property (ii) is well-known and the proofs
of (iii) and (iv) are similar. Property (v) is an immediate consequence of the
composition formula 2.3.1 and the strict total positivity of the kernels G",'

The point of (iii) is that it provides information about G'" * f in the
neighbourhoods of 0 and 1. It will be used in the proof of Theorem 2.4.5.

Integral operators with totally positive kernels have "variation
diminishing" properties (see [6 D. The next target is a theorem (2.3.6) of
variation diminishing type. A lemma is needed-in the case a = 0 it is well
known.

2.3.4. LEMMA. Suppose that )f satisfies (Cl (a + a + 1» and
(C6(a + a + 1».
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Let T E Au and 0 <~I < ... <~p+ 1< 1, where p - a = a - b ~ O. Let i* be
one of 1,..., P+ 1 and suppose that

,>,/(,,) ( I,...,b; ~I ,...,~,.,...,~p+ I)qnA =c
I, ... , a; T 1, •••, Tu

for some 1'/ in each interval (0, <5), <5 > O. If·% satisfies (Cl(a + a» and
(C6(a + a» then necessarily, by 2.3.3(iv), c= I.

Then there exists a function qJ of the form

b p + I

qJ= '\' a.g.+ ,~ (J.K(): . .)
~ I I ........ I ~l'
/=1 1= I

such that

(i) the coefficients a 1"'" ab, {J 1"'" {Jp + 1 are not all zero,

(ii) Lr~/ (J;k8J = 0 for j = I,... , a,

(iii) (-l)uqJh
T
~ 0,

(iv) {J" = 0 if e = 0, (_l)a+b+u+;·+I{J;.e ~ 0 if e = I or-I.

Proof Suppose first that 0 < ~I' ~p + 1 < I. Let qJ" be a function defined
by

qJ (t) = A%'(") (1, ,b; ~I ,...,~p + I)
" 1, ,a;T1 ,···,Tu ,t

b p+1

= ~ a;(1'/) gl")(t) + ~ (J;(1'/) K(")(~;, t),
;=1 ;=1

where the sum denotes A. times the expansion of the determinant by its last
column. By Theorem 2.3.3(v), for each 1'/ '* 0 and A. > 0 the function qJ" is
non-zero. Let A. > 0 be chosen so that

The function qJ" satisfies appropriate forms of (ii) and (iii). If the final
column of the determinant is replaced by the jth column then expansion by
the final column gives the appropriate form of (ii). The system X(,,) satisfies
(Strict Cl(a + a + 1» (by 2.3.3(v» and the appropriate form of (iii) foHows
immediately. The coefficient (J;.(1'/) is given by

(J;.(1'/) = U,(,,) (1, ,b; ~I , ... , e;., ,~P+l).
1, , a; T1' , Tu
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We will let 11-+ 0 through a sequence such that sgn fJi.(11) = e. Now let
(a 1''''' ab , fJl"'" fJp +I) be a cluster point of the sequence (a l (11),..., ab(11),
fJI(11), ... ,fJp +I(11). Then, passing to the limit and using 2.3.3(ii) and (iv), and
the continuity of the functions, it follows that

b p + 1

qJ = ~ aigi + ~ fJiK(e i ,·)
i=1 i~ I

satisfies (i )-(iv).
If 0 = el or ep + 1= 1 then replace el bYe; > 0 and ~p+ 1 by ~~+ I < 1.

Apply the result in the case 0 < e; <e2 < ... < ~p < ~~ +1 < 1 and repeat the
process of taking a cluster point as (e;,e~+I)-+ (el'ep+I)'

2.3.5. Remark. The lemma does not assert that qJ =1= O. However, if.;;r
satisfies (C4'(a+a+l» and eEAp+

"
or if .;r satisfies

(Ext C4'(a +a + 1» and 0 < e1 then qJ =1= O.
The number of sign changes of a functionjdefined on [0, 1] is denoted by

S - (I). That is,

S- (I) = sup{p: there exist 0 ~ el < ... <ep +1 ~ 1 such that

j(ei)jK+ I) <0 for i = 1'00" p},

and S - (I) either is a non-negative integer or is infinity. If rEA a then
S- (h y ) = a.

The next theorem takes two forms according as Jr satisfies
(C4'(a + a + 1» or (Ext C4'(a + a + 1». The second form is indicated by
elements in square brackets.

2.3.6. THEOREM. Suppose that % satisfies (Cl(a + a + I»,
(C6(a+a+ 1» and (C4'(a+a+ 1» [or (ExtC4'(a+a+ I))J, where
a ~ b. Let r E A a and

a

u=ko+K*j+ I KjK(·,r),
j=1

where k o E Ma,f is integrable,ftzy~ O,j E Nt and

a

"\' Kjg(rj)=O
j=1

jor all g E N b •

(i) If j-I (0) is a Lebesgue null set then u has at most p = a + a - b
zeros in (0,1) [or in (0,1 JI. If u has zeros at 0 <el < ... < ~p < I [or
ep ~ 11 then,for either e = 1 or e = -1, euh, ~ O. If,X satisfies (Cl(a + a»
and (C6(a +a» then e = (_1)a+b.

(ii) If,Jr'satisfies (C3) then S-(u)~p=a+a-b.
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Proof (i) Suppose that f-'(O) is null. Suppose that u has zeros at
O<e,<· .. <ep<I [or ep~Il. Consider e*E(O,I)\{e"...,ep}' Then
ej • -I < e* < ej • for some i* (where we interpret eo = °and ep + 1 = I if
ep < I). Put S = {e"... , ep , ~*}.

Now suppose that

qJ = go + 2: flsK(s, .)
seS

has been chosen according to Lemma 2.3.4 (and Remark 2.3.5) so that
qJ*O, goENb, Lsesflsk(s)=O for kEMa and (-1)°qJhT~O. We now
have, using the facts that qJ is continuous and *0, (-1)°qJf~Oandf-1(0) is
null, that

(-Itfl"u(~*) = (_1)0 2: flsu(s)
seS

= (-It f qJ(t)f(t) dt

>0.

This proves that u(e*) * 0. However, it also shows that the sign of fl l , * °
was determined by u and that in the appeal to Lemma 2.3.4 there was no
choice. Consequently

<W'(71) (1,...,b; e,,...,ep ) I °
sgnJl = e *

I,...,a; T1, ...,To

is contant for" in some interval (0,15) and

Now e' is independent of e*. This proves that (_1)a+be'h,u~O. This
completes the proof of (i).

(ii) Let A = {qJ E L CiJ([O, I]): qJhT~ 0, inf IqJ(t)1 > O}. Then A is
convex and open in L CiJ([O, I]). We will show that A n Nt * 0. For suppose
on the contrary that A n Nt = 0. Then there exists a linear functional
4>EL CiJ ([O, 1])* which separates A and Nt: 4>(qJ)=O for all qJENt and
4>(qJ) >°for all qJ EA. It follows from the first of these conditions that there
exists goENb such that 4>(qJ) = (go,qJ) for all qJELCXl([O, I]). Now by
condition (C3) the function go has at most b - I zeros in (0, I) and
b - 1 < a. Therefore gOh

T
is not of constant sign. We now obtain a

contradiction, for we can easily show (using the continuity of go) that
4>(qJ) = (go, qJ) <°for some qJ EA.

640/34 I <
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Now suppose that rp E Nt n A. The conclusion (ii) follows by applying (i)
to f + p,rp (j.l > 0) and letting p, -+ O.

The remainder of this section is concerned with the kernels H0 (of
Theorem 2.1.5) which are best approximations to K in the sense of
an~%' I ·Ioo.q )· Lemma 2.3.7 establishes one clause of Theorem 2.1.4 and
ensures that the kernels H o are defined. The proof of Lemma 2.3.7 follows
that of [12, Lemma 7.2]. Theorem 2.3.8 describes some of the properties of
the kernels Ho and shows that under suitable assumptions they are indeed
candidates for best approximations to K in the sense of anC%; I . loo.q)' It is
this last fact for which we require that %' satisfies (C2'(a + a)).

2.3.7. LEMMA. Suppose that % satisfies (Cl(a +0+ 1)),
(C6(a +0+ 1)), (C4(a +a)) and (C4'(a +0+ 1)).

Suppose that a function Po = ko+ K * hT ", where k oE M a , r O E A a and
h

T
" E N~, has zeros at the point of eo E A p , p = a + a-b. Then

% ( 1, , b; e! , ,e~) *O.
1, , a; r l , , r a

Proof Suppose not. Then there exist al'...,aa' KI''''' K a , not all zero such
that

and

a

'" K.g(r?) = 0
~ J J
J= I

for all g E N b

a a

~ aJkien + ~ KjK(e~, rJ) = 0
j= I j= I

for i=l, .... p.

Now, by (C4(a + a)), for some e* E (0,1)

a a

~ ajkj(e*) + ~ KjK(e*, rJ) * O.
J= I j= I

Then we can choose A so that

Then Po + A(L:}c.[ ajkj + L:J= I KJK(., r~)) has p + I zeros in (0, 1). This
contradicts Theorem 2.3.6(i).
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2.3.8. THEOREM. Suppose that % satisfies (C3) and (C2'(a +a)).
Suppose that rOE Au and C;O E A p are such that

% (1, ,b; C;! , , C;~) *O.
1, ,a; rl, ,ru

Let

% (1, ,b; C;~ , , C;:' s)
() ()

1, ,a; r~, ,r~,t
Ho s, t = K s, t - 1 0 '

% (1, ,b; C;o"'" C;p)
1, , a; r~ ,..., r~

and let

65

L O = ljtl ajkj + jtl PjK(., r j) : jtl Pj g(r) = 0 Jor g E Nb !.
Then (i) dim L o= p.

(ii) Ho * (Nt n C([O, 1])) = L o ;2 M a•

(iii) L ointerpolates at C;~,...,C;:. If To: C([O, 1])-+Lo is the operator oJ
interpolation at C;~ ,..., C;: then THo INt = To(TK INt)·

(iv) If ,ff also satisfies (Cl(a+a+ 1», hyoEN; and Po=
ko+K * hyo , where koE M a, is a Junction which is zero at the points oj C;O
then

Proof IfJ E Nt then

(.ff (1, ,b; C;!, , C;~, S) J(t) dt
. 1, ,a; rl' ,ra ,t

o 0 gl(rn

o gb(rn

ka(C;n K(C;~, rn

o

gb(r~) 0

K(C;~, r~) (K * f)(C;~)

k1(C;:) ka(C;~) K(C;:, rn K(C;~, r~) (K * J)(C;~)

k1(s) ka(s) K(s, r~) K(s, r~) (K * f)(s)

= ~ ajkis) + i: PjK(s, r~) +.f ( 1, , b: C;! ,..., C;~ ) . (K * f)(s)
j=1 J=l 1, , a, r 1 , .. ·, r u
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for some a l ,..., aa' fll ,•.., flu satisfying the equation

This shows that

u

'\' fl· g(r~) = °_ J J

J=I

forall gENt.

It is an immediate consequence of the definition of H o that (Ho* f)(en =
(K * f)(cS) for all i = 1,... , p and all f E L 100, 1J). Consider the mapping
({J: q[O, 1]) --+ IRb+p defined by

({J(f) = «f, gl)"'" (f, gb)' (K * f)(e~),... , (K *f)(e~)).

For each t E [0, 1] the point (g I (t), ..., gb(t), K(e~, t),..., K(e~, t)) is in the
closure of ({J(C([O, 1])) (let f "tend" to the unit point measure at t) and is
therefore in ({J(C([O, 1])). Now, by (C2'(b +P= a +a)), ({J(C([O, 1])) = IRb+p.

It now follows that the composite mapping

is surjective. But it coincides with the. composite

Consequently dimHo* (N;;nq[O, 1]))~p. However, by (C3) and the
definition of L o, dimLo~p. This proves (i), (ii) and (iii).

If.% satisfies (Cl(a +a + 1)) then

r 1% (1, ,b; e!,...,e~, S) Idt = ± r% (1, ,b; e!, , e~, S) hro(t) dt.
. 1, , a; r1,. .. ,ru,t . 1, ,a; r1, ,ru,t

If (K * hro)(en = Po(en - ko(en = -ko(c;7) for i = 1,..., p then by the
calculation at the beginning of the proof, using the fact that k oE M a =
sp{k p ... , kaf,

r,% ( 1, , b; ~! , ,c;~, S ) hro(t) dt =.Jr. ( 1, , b; C;! , ,c;~) .Po(s).
. 1, ,a; rl, ,ru,t 1, , a; r., ,ru

This proves (iv).
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2.4. The Variational Problem em(X, q)

Recall that, for m ~ b,

67

We will require that ,Y satisfies (C3), and gl''''' gb will therefore form a
weak Chebyshev system. It is then a consequence that if r E Au and hy E Nt
then a ~ b. By the Hobby-Rice theorem the set {r E A,;;: hy E Nt} is non­
empty if m ~ b; it is also a closed subset of the compact set A,;;. The
function r --+ K * hy E L q is continuous on A,;;. It follows that there exists a
function Po which is extremal for em(%. q). That is, Po is of the form

where koE Ma, rO E Au and a ~ m, hyo E Nt and

Conditions which must be satisfied by Po will be derived by considering
variations of Po' The argument, initially, follows that of Tikhomirov [21].
The variations are of two kinds: variation of the points of rO and, if a <m,
the extension of rO by the addition of points. There are three cases to
consider. The notation will be chosen to cover all cases simultaneously.

Case (1). If a ~ m - 2 then we may add two points to rO. In this case let
r~+l be a point with r~ < r~+l < 1 and let A denote (-00,0].

Case (2). If a = m - 1 then we may add one point to rO. In this case let
r~+ I = 1 and again let A denote (-00,0].

Case (3). If a = m then we cannot add additional points to rO. In this
case let r~+l = 1 but let A = {Of.

The next lemma is a development of [21, Proposition 2]. Let B(O, r)
denote the open ball {IE U: Ilfllq < r} in U.

2.4.1. LEMMA. Suppose that condition (C3) is satisfied. Let

Then



68 A. L. BROWN

Proof. Suppose that

0+1

p=k+ ~ 2(-Iy- 1uj K(.,rJ)E V
j=1

(so that uo + 1 EA) and

II Po + pll = IIPoll- 00 < IIPoll·

We will obtain a contradiction to the fact that Po is extremal for em(A", q).
The proof will involve an appeal to the implicit function theorem which is

usually stated in terms of functions defined on open sets. In order to invoke
the theorem it is convenient to extend the domains of definition of K and
gl ,..., gb by

K(s, t) = K(s, 1),

for t~ 1, all sE [0, 11 and i= I,...,b.
If uo+I=O let v=a and ~=ro. If uo+1*O (and so uo+ 1 <0) let

v = a + 1 and ~ = (r~ ,..., r~, r~+ I)' Thus, in both these cases ~ E A;:- s; IR".
Let W= {rp ... , r,,) E IR": 0 < r l < ... < r"f. Then W is a neighbourhood

of ~. Define mappings

B: W ---+ IR b,

qJ: Ma X W ---. L q

by

l' oT) ~T~+l

B(r)j= ~ 2(-I)j-'1 gj(t)dt+ev ' 2(-1)0+11 gj(t)dt
j= 1 • 0 • 0

.1

+ (_1)0+ 2 I gj(t) dt,
• 0

t' oT)

qJ(k, r)(s) = k(s) + ~ 2(-I)j-1 I K(s, t) dt
]= 1 • 0

~TO + I .1

+e".2(-1)0+II u K(s,t)dt+(-1)0+21 K(s,t)dt,
• 0 • 0

where e" = I if v = a + 1 and e,_ = °if ~'= a.
If r= (r l ...., r,.) and 0 < r 1 < ... < r,_ < r~+1 let

inCase(l)ifv=a+ 1,

in Case (2) if~' = a + 1,

ifv= a.
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qJ(k, r) = k +K * hT ,.

Note that these equations do not hold if v = a + I and r~+ I < ru + (.
Furthermore

B(tJ) = 0,

A straightforward calculation (appealing to the contlOUity of K and
g (,... , gb) shows that Band qJ are Frechet differentiable mappings and that
the derivatives are given by

v

B'(r)(u)/ = ~ 2(-I)j-1 ujg/(rj ),
j=1

l'

qJ'(ko,tJ)(k,u)=k+ I 2(-ly- 1 ujK(.,rJ).
J~(

Therefore

P = qJ' (ko' tJ)(k, u),

where k E M a and u= (u l , ... , u..) E ker B'(tJ).
The mapping

W T-+9'«) I :f'(IR", IR b )

is continuous and, by (C3), B'(tJ): fRL' ---> IR b is of rank b (recall that a ~ b
and r O contains the a points r~ ,... , r~ of (0, 1)). Now by a routine
applications of the implicit function theorem there is a neighbourhood Wo of
tJ E IR l' and a mapping

such that '1'(tJ) = tJ, 'I' is differentiable and '1" (tJ)(u) = u for u E ker B' (tJ).
If 0 < e < I then

A simple calculation now shows that for small e >0

However,
v=a+l

IlqJ(ko+ ek, 'I'(To+ eu))11 < IIPoll·

II 'I'(tJ + eu) - tJ - eull = dull. 0(1) as e ---> O. Therefore if
and uu+ ( < 0 then for small e > 0 the coordinate
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(l/I(tJ + eu) - tJ)o+ 1 has the same sign as uo+I' Therefore for small e > 0, in
all cases, rp(ko + ek, l/I(fo+ eu)) is of the form k o + ek + K * h y ' for some
r' E A o ' with a' <m and hy ' E Nt. This contradicts the extremal property of
Po' The proof of the lemma is complete.

The two cases 1<q < 00 and q = 00 are now discussed separately; the
latter case in two stages, first assuming that (Strict C1) is satisfied, and then
assuming only (Cl).

2.4.2. THEOREM. Suppose that 1 <q < 00 and that m ~ b. Suppose that
.% satisfies (C3), (Cl(a + v)), (C4(a + v)) and (C4'(a + v» for b <v <
m+I.

If Po = ko + K * hyo , where ko E M a , r O E A o and a <m, and hyo E Nt, is
extremal for em(%, q) then

(i ) Po has precisely p = a - b + (J zeros in (0, 1);

(ii) either a = m - I or a = m; if ,% also satisfies (Ext C4(a + m»)
then a = m. Futhermore

(iii) ifb+2<r<m then er(%,q) <er- 2(%,q); if,J/ also satisfies
(Ext C4(a + m)) and b + 1<r <m then e,(%. q) < er_I(J/, q).

Proof Note that, by Proposition 2.I.2(ii),J/ satisfies (C6(a + v)) for
b<v<m+ I.

By Theorem 2.3.6 the function Po has at most p = a - b + a zeros in
(0,1). So IIPollq* 0. Let Po change sign at the points of f,,0 E A p , where
p <p. Choose e = ± 1 so that ePohlo ~ 0. Let

IPol
q
- 1

rp=e IIPollq-1 sgnPo'

Then rph lo ~°and rp -1 (0) is a null set. The linear functional (/) E (L q)*
defined by

(/)(1) = ferp(t) f(t) dt

is the unique support functional to B(O, IIPoII) at Po such that II (/) II = 1 and
(/)(Po) = IIPoll. (If 1 < q < 00 then the space U is smooth, if q = 1 then Po is
a smooth point of the closed ball B'(O, IIPol1> because rp-I(O) is null).

The set V of Lemma 2.4.1 is convex, and so, by Lemma 2.4.1, the linear
functional (/) separates 11(0, IIPol1> and the convex set Po + V. Therefore

Jrp(t) k(t) = ° for all k E M a
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and

a+1

~ cuiqJ *K)(rJ) ~ 0
j=1

whenever both
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and

a+1

'\' u· g(r?) = 0
'-- J J
J~ 1

for all g E Nb ,

(-ltu a + , EA.

This condition, in the case that ua + 1 = 0, implies that for some go E Nb

(go + qJ *K)(rJ) = 0 for j = 1,..., a.

Now by Theorem 2.3.6 applied to the transposed system ,%' (and to the
function qJ) it follows that a ~ b - a + p, that is, p ~ a - b +a = p. This
proves that p = a - b +a, and proves (i).

It now follows from Theorem 2.3.6 that € = (_l)a+b. Also, by Theorem
2.3.6 applied to .ff'

By condition (C3) there exist UI'"'' ua + 1 such that

a+1
,~ °u.g(r.) = 0__ J J

J~ 1

for all g E Nb

and such that ua + 1 i= O. We can choose such coefficients with
(-ltua + 1 < O. If a ~ m - 2 (Case I) or a = m - I (Case 2) then
A = ( - 00,0]. Now for these coefficients

a+1

o~ ~ cuiqJ * K)(rJ)
j~1

a+1

= '\' cu.(go+qJ*K)(rO)__ J J

j=1

= cua+I(go + qJ * K)(r~+ I)

= -« -IV+1ua+1)« _1)a+b+a(go + qJ * K)(r~+ I»
so that
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If we had (J:::;; m - 2 (Case 1) and T~ < T~+ I < 1 this would contradict
Theorem 2.3.6. This proves that (J is either m - 1 or m. If ,J( satisfies
(Ext C4(a + m)) and we had (J = m - 1 (Case 2), so that T~+ 1 = 1, we would
again have a contradiction to Theorem 2.3.6. This completes the proof of
(ii ).

It follows from (ii) that a function P~ which is extremal for em_2(A"', q)
cannot be extremal for em(Jl, q). Therefore em_2Ur, q) > em(%, q). In the
same way, if (ExtC4(a+m)) is satisfied then em_I(%,q»em(Jl,q). The
conditions for the integer m contain the conditions for smaller integers.
Therefore (iii) follows.

The next two theorems are concerned with the case q = 00.

2.4.3. THEOREM. Let m ~ b. Suppose that % satisfies (Strict Cl(a + v))
for b :::;; v :::;; m + 1.

If Po = ko+ K * hTo , where koE Ma , TO E Au and (J:::;; m, and hyo E Nt, is
extremal for em(A"', (0) then

(i) (J = m, Po has precisely p = a - b + m zeros in (0, 1) and there
exist p + 1 points of [0, 1] at which Po attains its bound II Poll oc with alter­
nating signs;

(ii) if b + 1 :::;; r :::;; m then e'(LA", 00 ) < e, _1(% , 00 ).

The proof of the theorem requires a simple lemma. The implications of
Proposition 2.1.2 will be used without comment.

2.4.4. LEMMA. The subspace

I \ \' 0) ,u, 0 I
V = Ik + /":;'\ ujK(., Tj : k E M a , /'::'1 UJg(Tj ) = °for g E N b \

is a Chebyshev subspace of C([O, 1]).

Proof V'is of dimension p = a + (J - b. It is easily seen that any
function in V' which has p zeros is the zero function (by Strict Cl(a + (J))).
The conclusion follows by Haar's theorem.

Proof of the theorem. It follows from Lemma 2.4.1 that ° is a best
approximation to Po from V'S; V S; C(IO, 1D. Therefore, because V'is
Chebyshev, Po attains its bound with alternating signs at p + 1 points of
[0,11, and has at least p zeros on (0,1). But, by Theorem 2.3.6, Po has at
most p zeros on (0, 1). Therefore Po has precisely p zeros on (0, 1). If m = b
there is nothing more to prove. If m ~ b + 1 and the zeros of Po are at
c:.0 E A" then (-It+bPohlo~0.
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Now suppose that (J < m (Case (1) or Case (2». Let

q>(s) = (_1)a+ 1,% ( I,..., b; oti""'ol;~,os ).
I,..., a; T 1 , ••• ,Ta ,Ta + 1

Then

a u+l

q> = \---, a, k, + \~ u·K(·, T?),_ ) J .-....} J
J ~ I Jce 1

where
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for all g E Nb
j= I

and

= (-I )a+! W' (I,.... b; I;~ ,...,I;~)
Ua + 1 -./1 0 o·

I,.... a; T1, ...,Ta

Therefore q> E V. By the condition (Strict Cl(a + (J + I» q> is zero only at
the points 1;0 and (_l)a+b+lq>hlO~O. It follows that, for small e> 0,
IIPo+ eq>lloo < IIPoll oo , and this contradict. Lemma 2.4.1. This proves (i), and
(ii) follows.

2.4.5. THEOREM. Let m ~ b. Suppose that .Jr satisfies (C3) and
(CI(a + v», (C6(a + v»for b";; v,,;; m + I. Then there exists afunction Po =
ko +K * hTo , where ko E M a , To E A a and (J";; m, and hTo E Nt, such that

(i) IIPoll oo = ernCY, (0),

(ii) there exist a - b + m + 1 points of [0, I) at which Po attains its
bound II Po 1100 with alternating signs.

Proof The proof will use the notation and conclusions of 2.3.2 and
2.3.3.

By Theorem 2.3.3(v), for each 1] *- 0 the system ,%(11. satisfies (Strict
C 1(a + v» for b ,,;; v ,,;; m + I. Let

a

P = k + K(11' * h = '\' a (1])k~11. + K(11' * hn 7J T(,.,)....... j J T(Jl1

j=!

be extremal for ern (,·,?""(11), (0). Let (1]r)r;> 1 be a sequence tending to zero such
that

liminfern CJr(11., (0)= lim IIP11 II
'1 ..... 0 r-+'x) r
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and such that the limits
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exist. Let

r O = lim r("r) E A,;;
r ..... ·x

a

Po = 2: ajkj + K * hTO = ko + K * hTO '

j=1

It will be shown that Po satisfies (i) and (ii). It follows easily from Theorem
2.3.3(ii) that hTO E Nt. Another routine calculation, using Theorem 2.3.3(iv),
shows that

as r--->oo,

and it follows from this that IIPoll CXJ = limhCXJ IIP"J=<-.
Next it will be shown that

em(A", oo)~limsupem(.;f("), (0).
,,-0

Let P=k+K*h:r, where kEMa , fEA u and (J~m, and h:rEN;, be
extremal for empr, (0). Consider the mapping

defined by

1/1(11, r)i = (gi * G", hT ),

1/1(0, r)i = (g;, hT )·

Then 1/1 is continuous by Theorem 2.3.3. Also (compare with () in the proof
of Lemma 2.4.1) 1/1 is a Frechet differentiable function of its second variable
and its partial derivative 1/I~(11, r) E .st'(IW, IR b

) is a continuous function of
(11, r) E IR X Au such that rank I/I~(O, f) = b. By the implicit function theorem
there is a continuous mapping u: (-&, &) ---> Au' defined on some interval
(-&, &), such that u(O) = f and 1/1(11, U(11)) = °for 11 E (-&, &). Then

em(.jf("!, (0) ~ IIG" * k + K(") * hu(,,)lloo

= IIG" * (k + (K * G,,) * hU('" 1100

~ Ilk + (K * G,,) * hu(",lloc

--->llk+K*h:rlloo as 11--->0,

= em(.A", (0).
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Now we have

em(%, oo)~ IIPoll oo = lim infem(%('!), (0) ~ lim sup em(%('!), (0)

~em(%' (0).
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This proves that Po is extremal for em~%' (0).
Finally, it follows from the fact that IIP'!r - G'!r * Poll---> °that if r is large

the number of alternations of P'!r on [0,1] is not greater than the number of
alternations of Po on [0, 1]. To prove this it is necessary to examine the
behaviour of the functions in neighbourhoods of °and 1; Theorem 2.3.3(iii)
contains the information required. This proves (ii), and the proof of the
theorem is complete.

3. CONVOLUTION OPERATORS ON PERIODIC FUNCTIONS

3.1. Statement of Result

In this section C will denote the space of continuous 2n-periodic real
functions and L 00 the space of (equivalence classes of) bounded measurable
functions. The 2m + 1 dimensional space of trigonometric polynomials of
order ~m will be denoted by ff"m.

We shall be concerned with kernels K defined on IR X IR, bounded, 2n­
periodic in each variable separately and (for definiteness) piecewise
continuous in each variable, such that there is an integral operator

TK:Loo--->c

defined by

J.
2" f" + 2"

(TKI)(s) = (K *I)(s) = 0 K(s, t) f(t) dt =." K(s, t) f(t) dt.

If K is a kernel and k l ,..., k a ; g\ ,..., gb are functions in C then

will be referred to as a periodic system. The notations of Section 2.1 are
applicable.

The principal result of this section concerns convolution operators with
kernels of the form D(s - t), where D is a 2n-periodic function (there will be
no confusion if we use D for both function and kernel) and particular
systems of the form

q = (D; PI'"'' Pa ; PI'"'' Pa )
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in which either a = 0 and ~ = (D; 0, 0) or PI"'" Pa are the functions 1,
cos t, sin t,..., cos mt, sin mt for some non-negative integer m = i{a - 1). (In
the notation of Section 1.2 we are concerned with the situations M a =
Nb = {Of and Ma = Nb = 15m ), However the results are formulated only for
the cases in which a> O. Only quite trivial changes are required to obtain
corresponding statements and proofs for the case a = O.

Let

An = {r = (r1"'" rn) E IR n: r, < '" < rn < r I + 2n f.

If n is an even integer and r E An let h
T

be the 2n-periodic step function
defined by

for ri<t<ri+, and i=l,... ,n (rn +,=r,+2n).

The first condition we must formulate concerns only the function D (and
the integer m) and does not correspond to any of the conditions of
Section 2.1.

Condition (CO). If P is a trigonometric polynomial then (D - p) -, (0)
contains no interval.

The remaining two conditions will be formulated for a periodic system
.;f = (K; k j , ••• , ka ; gj ,..., gb) in which b - a is an even integer.

Condition (Cl). For each pair of non-negative integers a and p, with a =
p+Ha-b) and for either £a= lor £a=-l

£a% (l, ,a; ~l""'~Z"+')~O
l ,b; r" ...,rZa +'

for all ~=(~I'''''~Z,,+I) in Az,,+1 and r=(r, ....,rZa +,) in Aza + I ' In the
terminology of [6 J this is a "sign regularity" condition.

Condition (C2). For each positive integer a and each r E Aa the
functions k 1'...,ka , K(·, r l ),... , K(., ra) are linearly independent.

In the first. draft of this paper the systems v' were required to satisfy a
further condition, but by extending some arguments of [181 it can be shown
to be a consequence of the other conditions. The implication will be stated
here as a theorem and proved in Section 3.2.

3.1.1. THEOREM. Let:..t = (D; PI"'" Pa; PI'"'' Pa) be a periodic system
in which DEC, a = 2m + 1 and sp{pl''''' Pa } = ~m' If D satisfies (CO) and
'Y satisfies (Cl) and (C2) then for each integer n > m there exists r O E A 2n

and PoEirn _, such that r~+I-r~=7[ln for j=l,.... 2n-l and
±(D - Po)hTO ;;:' O.
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The only explicit examples we know that satisfy the conditions we require
are the following ones.

3.1.2. EXAMPLES. Let D I be the right continuous, 2n-periodic function
defined by

for 0 ~ t < 2n.

For each integer r ~ 2 let

1 00 I ( n)Dr(t) = - 2: kr cos kt - r 2" .
n k=1

(This equation holds for r = I provided that t/2n is not an integer).
The functions Dr are well known. Dr is piecewise polynomial with knots at

2b, k an integer. For each r ~ 1

./

Dr+l(t)=Dr+I(O) + j Dr(u)du,
• 0

but more significantly from our point of view this relation takes the form

Let qr denote the periodic systems fi}Jr = (Dr; 1, 1) (in which a = I, m = 0).
That Dr satisfies (CO) is obvious. Furthermore it is a standard result of
approximation theory that Dr satisfies the conclusion of Theorem 3.1.1 (see,
e.g., [10, Chap. 8D. It is easily verified that the system Dr satisfies condition
(C2). It also satisfies (CI). More precisely we state as a

3.1.3. THEOREM. For each -positive integer r and non-negative integer (J

-f! (I; ~1'''''~20+1) ~O
r I; r 1 , .... r 20 + I

for all ¢ and r in 1'20+ l'

The theorem will be proved in Section 3.2.
We can now formulate the principal result of this section. It generalises

those results of [21 J which apply to the periodic situation.

3.1.4. THEOREM. Let @ = (D; PI"'" Pa; PI"'" Pa) be a periodic system
in which DEC, a = 2m + 1 and sp{ Pi"'" Pa} = g""m' and let TD denote the
convolution operator in Y?(L 00, C).
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Suppose that D satisfies (CO) and that the system 9 satisfies (C1) and
(C2). Then for each n > m

dL,(D, If"n-l) = a2n _ I (TD ; If"m, If";) = a2n(TD ; If"m' If";)

= k 2n - 1(TD ; If"m' If";) = k 2n(TD ; If"m' If";) = I(D * hTo)(O)!,

where rO, corresponding to n, is as in Theorem 3.1.1.
There is ~o E A2n such that ~~+ I - ~~ = n/n for i = 1,..., 2n - 1 and

(D * iiTO)(~n = 0 for i = 1,... , n. Furthermore

c; (1,...,a; ~~ ,..., ~~n ) 0
E:/ 0 0 =1=-.

1,..., a; r l , .. ·, r 2n

Let PO' corresponding to n, be as in Theorem 3.1.1. Let fj0 be the kernel
defined by

w (1,...,a; ~~ ,... , ~~n' s)
Sf 0 0_ 1,...,a; T I ,.oo,r2n ,t

Ho(s, t) = D(s - t) - -------:------,-----
c; (1,...,a; ~~,... , ~~n)
£t 0 01,... , a; r l , ... , T2n

Let

Lo= lq(S) +j~1 {3jD(s - rJ): q E If"m' J~I {3Jp(rJ) = 0 for p E If"m~ .

Then (i) Po is a best approximation to D from If"" _I in the L I norm,

(ii) If"n_l is extremalfor k 2n - 1(TD ; If"m, If";>,

(iii) Lo is ofdimension 2n and is extremalfor k 2n(TD ; If"m, If"~),

(iv) Tiio is extremal for a2n(TD ; If"m' If";>.

3.1.4. Remarks. (1) Tp is not extremal for a2n - I (TD ; fTm , fT~) as
.L .L 0

fTmct. Po * (fT m) = Tpo(lf""J (cf. Lemma 3.3.1).

(2) The function D 1 is not continuous and so the system g I =

(D 1 ; 1; 1) does not satisfy the conditions of the theorem as stated. It should
be possible, but cumbersome, to formulate general conditions short of
continuity, and appropriate variants of the results in Section 2.3 which would
permit an extension of the theorem to include the system f21 • However, the
systems gr' r ~ 2, do satisfy the conditions stated.

(3) It is appropriate to comment on the particularity of the theorem.
Suppose that one attempts to apply the arguments to a more general system
'./' = (D; fl '00" fa; gl ,..., gb)' At one point one requires a = b. There is a
crucial step in the (Tikhomirov's) argument which depends upon M a and N b

being translation invariant. The only finite dimensional translation invariant



FINITE RANK APPROXIMATIONS 79

subspaces of e are spaces of trigonometric polynomials. The final clauses
(iii) and (iv) require that N b satisfy a Chebyshev condition (corresponding to
(C3) of Section 2.1). Therefore the combination of the arguments for all the
conclusions of the theorem require that Nb = g-m and that M a be a space of
trigonometric polynomials. Little is sacrified by considering only the
situation M a= Nb = g-m'

(4) The sets 'r+ D * r;, are translation invariant. Therefore any tran­
slate of Lo is extremal for klATD ; 'rm, r -/;;). Thus for the sets 'rm+ D * rr ~
there are infinite families of subspaces extremal for some of the Kolmogorov
widths.

Outline proof of Theorem 3.1.4. There is a long sequence of inequalities.

The conclusion of Theorem 3.1.1 is satisfied by D, m, rO E Aln and
Po E ITn _ l • It follows that hTO is orthogonal to rn _ I' SO equality (I) follows
easily. Inequality (2) requires no comment. Equality (3) is by the case
q = 00 of Proposition 2.1.1. Inequality (4) is a consequence of Lemma 3.3.1.
Inequalities (5) and (11) are cases of Lemma 1.2.1. Inequality (6) is
immediate.

The major step in the proof of the theorem is the proof of inequality (7)
which we will state and prove as Theorem 3.3.2. The argument is due to
Tikhomirov [21]. Once we are in possssion of Theorem 3.2.1 the argument
proceeds almost exactly as in the particular situation discussed by
Tikhomirov.

At this point in the argument it follows that (I )-(7) are all equalities.
Conclusion (i) of the theorem is immediate. It is simple to show that the
subspace r m + Po * 'r;;,~ r,,-I is extremal for kln-1(TD ; ITm • r ';,).

The step function hyo has the property hTO(t + n/n) = -hyo(t). So the
continuous function D * hTO has the same property and has zeros at the
points of some ~o E Aln as described in the theorem. The assertion that

n ( 1...., a; c;~ ,..., c;~n .)
C;L 0 0 #: 0

1,... , a; rl,...,r ln

640/34/1-6
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is a consequence of a periodic variant of Lemma 2.3.7. The kernel Ho is now
defined. Equality (8) (the right-hand side is the mixed norm of the kernel. as
in Section 2.1) is a consequence of a periodic variant of Theorem 2.3.8.
Equality (9) is by Proposition 2.1.1 again. The fact that Tno satisfies the
defining properties of Qzn(TD ; 15m, 15 -:J is a consequence of the variant of
Theorem 2.3.8; this proves inequality (10). It now follows that there is
equality throughout (1)-(11). The extremal property (iv) of 8 0 is immediate;
the properties of lo require another return to the variant of Theorem 2.3.8
and an appeal to Lemma 1.2.I(ii).

The periodic variants of the results in Section 2.3 are discussed in
Section 3.2.

3.2. Condition (Cl)

The entire Section 2.3 applies with little modification to the periodic
situation. The modifications which are necessary will be described and the
principal theorem. corresponding to Theorem 2.3.6. will be stated as
Theorem 3.2.1. The latter part of this section is devoted to proofs of
Theorems 3.1.1 and 3.1.3.

A large number of the changes which must be made in order to pass from
the non-periodic to the periodic situation are simply the replacement of A by
A. By this change we obtain conditions (C3). (C4), (C5) and (C6)
corresponding to conditions (C3). (C4), (C5) and (C6) of Section 2. I. If
(C3) is satisfied then b is either zero or an odd integer.

The one non-trivial change which has to be made is the replacement of the
kernels G11 of 2.3.2 by the sequence of de la Vallee Poussin kernels

These kernels have properties analogous to those of the kernels G11' and in
particular

Wn (.;l ....'<;za+l) >0
r 1'"'' r Za + 1

whenever I ~ 0 ~ nand .;, r E Aza + 1 (the result is due to Polya and
Schoenberg [19], see also [6, Chap. 9, Section 3 j). If.% is a periodic system
(with continuous kernel K) which satisfies (CI). (C2) and (C3) then for each
integer 0 it can be approximated by a system Wn * j'/' satisfying a condition
which we can describe as (Strict Cl (a + 20 + 1». In this way we can obtain
a periodic substitute for Theorem 2.3.3.
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The number S; (I) of cyclic sign changes of a 27t-periodic function f is
defined by

S;u) = sup{2n : f(T;) f(Ti+ I) <ofor i = 1,... , 2n and some TE A2n }.

The basic theorem of variation diminishing type is the

3.2.1. THEOREM. Let Jf be a periodic system satisfying conditions (CI),
(C2) and (C3). Suppose that 2a + 1~ band

2a

U = ko + K * f + ~ KjK(., TJ ),

j=1

where T E A2a , ko E MaJ is 27t-periodic and integrable over [0, 27t]JhT ~ 0,
fENt and

2a

"\ Kjg(Tj ) = 0
j=1

for all g E Nb •

(i) Iff-I (0) is a Lebesgue null set and u is zero at the points of
c; E An then n ~ 2p = a - b + 2a. If u is zero at the points of c; E .121' then,
for either e = 1 or e = - 1, wii, ~ O.

(ii) S;(u)~2p=a-b+2a.

Only trivial modifications to the statement of Lemma 2.3.4 and to the
proofs of Lemma 2.3.4 and Theorem 2.3.6 are necessary. To obtain the
periodic variants of Lemma 2.3.7 and Theorem 2.3.8 it is only necessary to
make notational changes in the statements and proofs: substitute appropriate
conditions, replace A by A, p and a by 2p and 2a, etc.

The rest of this section is devoted to the proofs of Theorems 3.1.1 and
3.1.3. The proof of Theorem 3.1.1 requires a sequence of lemmas. It will be
supposed that q = (D; PI"'" Pa ; PI'"'' Pa) is a periodic system in which
DEC, a = 2m + 1 and sp {p I , ... , Pa } = g-m' The conditions required for each
lemma will be stated explicitly.

3.2.2. LEMMA. Let L.une lnt be the complex Fourier series of the real
function D. If (2 satisfies conditions (Cl) and (C2) then l.unl ~ l.un+ II for all
n ~ m + I. Consequently .un *- 0 for n ~ m + 1 and

D * (g-;;,n~) = e;;,n en

for n ~ m + I.

The proof of the first assertion is a straightforward extension of the proof
of [6, Chap. 5, Lemma 7.2]. It depends only upon Theorem 3.2.1 which is a
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consequence of (Cl), (C2) (and (C3), which is also satisfied). If I-l n = 0 for
some n~ m + 1 then it follows that D is a trigonometric polynomial, which
contradicts (C2). Thus I-l n *0 for n ~ m + 1 and the final assertion follows
easily.

3.2.3. LEMMA. Suppose that Q satisfies (Cl) and (C2). II n ~ m and
q E rn then Sc- (D - q) :::;; 2n + 2.

The corresponding statement in the case a = 0 is [18, Theorem 2.41. The
proof is an extension of that in [18]. Consider q E /Tn' Then, by Lemma
3.2.2. q = q. + D * q1 for some q. E ir"m and q2 E /T;;; n r n • Define Ir E LX
by

Ir(t) = r.

=0,

o:::;; t < l/r.

l/r:::;; t < 2n:.

Then/r can be written as Ir = Ir. + Ir2 with/r • E r m, Ir1 E ;r;;;. Then

and

Now Ir( + q2 E /Tn and S~(fr. + q2):::;; 2n. Therefore. for all sufficiently large
r, S~(f,.2 - q2):::;; 2n + 2 (one requires r> Il/r. + q21i). It then follows from
Theorem 3.2.1(ii) that S~(D*lr-q):::;;2n+2. The conclusion of the
lemma follows by going to the limit as r ---> 00.

If the function D satisfies (CO) then the conclusion of Lemma 3.2.3 can be
strengthened.

3.2.4. LEMMA. Suppose that D satisfies (CO) and that 0: satisfies (Cl)
and (C2). If n ~ m + 1, Po E ;rn_1 and D - Po is zero at the points olr E Ak
then k:::;; 2n. If k = 2n then ±(D - Po)h ~ O.

Proof It follows from condition (CO) that if (D - Po)(s) = 0 then D - Po
takes non-zero values in each of the intervals (s - o. s) and (s, s + 0) for
each 0> O.

Suppose that (D - Po) h
T

, ~ O. where r' E A2p ' By Lemma 3.2.3 there are
such p and r' and 2p:::;; 2n. If 2p = 2n then r' must account for all the zeros
of D - Po' for otherwise S;: (D - Po - e) > 2n for some small e of
appropriate sign, and this contradicts Lemma 3.2.3. Thus if 2p = 2n then
k :::;; 2n. If 2p :::;; 2n - 2 then there exists p E r n _ I which is zero at the points
of r' and at no points other than translates of these by multiples of 2n.
Suppose [r;, r; + 2n) contains r zeros of D - Po distinct from r; ,.... r;p'
Then for small e of appropriate sign S;:(D - Po + ep) ~ 2p + 2r. Therefore
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2p + r:::;; 2p + 2r:::;; 2n. Thus k:::;; 2p + r:::;; 2n and if k = 2n then r = °and r'
can be replaced by r. The proof of the lemma is complete.

3.2.5. LEMMA. If DEC then for some s and some Po E g-n-I

Po (s + ~ n) = D(s + ~ n)

for j= 0,1,..., 2n - 1.

Proof Let

Then M is a hyperplane in IR 2n and

for some ail"" a2n • Now (1,... ,1) E M and therefore a l + ... +a2n = 0.
Define a mapping qJ: IR --+ IR 2n by

qJ(S) = (D(S), D (S + *-n),...,D (s + 2n; 1 n) ).

It will be shown that {qJ(s): S E IR} is not contained in either of the open half­
spaces determined by M. For suppose on the contrary that

for all S E IR. Then, by taking

I 2n - 1
s=O,-n,..., n

n n

in turn and summing, we obtain the inequality

which contradicts the fact that a l + ... +a 2n = 0. That D is continuous
implies that qJ is continuous. Therefore, for some s, qJ(s) E M. That is, for
some S and some pEg;, _ I

640/34/1-7
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for j = 0,..., 2n - 1.

The conclusion of the lemma now follows with Po(t) = p(t - s).
Theorem 3.1.1 now follows from Lemmas 3.2.5 and 3.2.4.
We now proceed to the proof of Theorem 3.1.3. The first steps consist of

computations for the system 0\ = (D 1 ; 1; 1).

3.2.6. PROPOSITION. (i) Let rl<rz< .. ·<ru<ru+,=rl+2n and
r l ::;:; u 1 < liz < ... < Uu < r l + 2n. Then

ifr[::;:; lil < r1 ::;:; .. · < Ta ::;:; Ua < TI + 2n,

otherwise.

(ii) Let rl<rz<"'<Tzu+l<rZut-2=rl+2n and r1::;:;u, <
uz <",<uZa <r l +2n. If [rj,rj+l)n{ul,,,,,ua}=0 and [rk,rk+l)n
{u I , ... , U Zu f is one point for k =1= j then

0'\ ( 1; ul· ..·,U Za )=(_lJJ+I_1_(lQdU.
0; r l ,· ... r Zl1 + 1 2n. T ,

(The reason for the form of the right-hand side will be found in the proof of
Theorem 3.2.7.)
Ifj =1= k and ([rj , rj + I) U [rk, rk+ I)) n {u 1''''' u zu }= 0 then

0"\ ( 1; uI' ..··UZu ) =0.
0;rl'.... Tzu + 1

Proof. (i) [rI' r I + 2n) = Uj(f= 1 [rj , TJ + I)' Either each subinterval contains
one of the points u1,... , Uu or there is aj such that [rj , rj+ J) n jUl ,.",Uu } = 0.
In the latter case

DI(u, - rJ - DI(tl; - rj + I) = -(1/2n)(rj + 1- rj)'

and in the (0 + 1) X (0 + 1) determinant

i = 1,... ,0,

Col(j + 2) - Col(j + 1) is a multiple of ColI and the determinant is zero
(we interpret Colo+2=Coll). If rl::;:;uI<rz~···<ra~u(f<rl+2n

then

1
= 1 - h (TJ+ I - rJ

for i =1= j.

for i = j.
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The conclusion is this case follows after performing in succession the column
operations Col(j + 1) + (1/2n)(rj + 1 - rj ) ColI for j = 2, 3,..., a-I and a.

(ii) Suppose that [rj , rj +1) II {U p"" UZU } = 0. Then

for i = 1,.... 2a. If kol= j and also [rk , r k + 1) II lu!'..., u2u } = 0 then it is easily
seen that

(, ( 1; u1,···,U2u )-0fL\ - .
0;r" ...,r2u + 1

Now suppose that [r k ,rk +,)II{Ul""'u2u } is one point for k;f:-j. Then, by
the column operations Col(j + I) - Col j, we have

if j = 1,... , 2a

if j= 2a + 1

for j = 1,..., 2a + L

where the final equation is by (i) and the fact that

This completes the proof of (ii).

3.2.7. THEOREM. If % = (K; 1; 1) let Deif denote the system
(K * D 1 ; 1; 1). Then if r 1 < r 2 < ... < r 2u + 1 < r 2u + 2 = r 1 + 271:,

Proof The determinant on the left can be expanded by its first row, and
each term in the expansion by its first column. The basic composition
formula (2.3.1) can then be applied to each term. The penultimate step
depends upon Proposition 3.2.6(ii).
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Llj = I(u l , .. ·, U2u): T, ~ U l < U2 < ". < U2u < T1 + 2n,

card[rk , Tk+,)n jul"'" u20 } = 1 for k -=/=-jf.

Then

(DJr) (1:~1""'~20+1)=2~1 (_1)i+J-I(K*Dl)(~I'''''¢:'''''~20+')
1,T" ... ,T20 +1 l,j=1 T1 ,· .. ,Tj , .... T20 +,

20 + 1 ;: E ;:
= ~ (_1)i+J-'loo·r K ( .."·"'''i'''', ..20+,)

I,}=' ' .1' ul'.... u20

- I' I' .,./ (0;~1""'~20+1) c- ( 1;u l , ..·.u20 ) d d- - . .. ./1 St'l U, ••• u2
, .1' 1; ul'''''u2a 0;Tl' .... r2a + 1 a

=

=

The order of integration and summation can now be interchanged, and the
conclusion of the theorem follows.

Proof of Theorem 3.1.3. First consider the case r = 1. Suppose that ~ =

(~1' ..., ~20+ I) and T= (Tl"'" T2u +I) are in 1'2u +I' If r, ~ ~1' ~20+ 1 < r l + 2n
then, by Proposition 3.2.6(i)

The general case follows by periodicity and cyclic permutation.
Now Dr+, = Dr * D 1 so the theorem follows by induction using Theorem

3.2.7.

3.3. The Completion of the Proof of Theorem 3.1.4

In this section inequalities (4) and (7) of Section 3.1 will be proved.
Throughout this secti.on it will be assumed that the conditions of
Theorem 3.1.4 are satisfied. The integer n > m will be fixed and rO E Al "

(r~+, - T~ = n/n for j = 1,.... 2n - 1) will be as in Theorem 3.1.1.
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dim(p * g-;) :::;; (2n - 1) - (2m - 1).

87

Consequently the convolution operator Tp does not satisfy the defining
conditions of

a2n -1 (Tn; If"m' /(";,) = inf{11 Tn - T' II: T' E Y(L c£, C),

dim T'(15;,):::;; 2n - 1, g-m S;; T'(15';;)}.

However inequality (4) of Section 3.1,

inf II Tn - Tpr~ a2n _.(Tn ; 15m , g-;),
peg"n_1

follows from the following simple lemma which we state, without proof, in
the notation of Section 1.2.

3.3.1. LEMMA. Let T' E 5zfl(E, F), M a S;; F, Nt S;; E and suppose that
dim(T' (Nt) n M a) = a and dim T' (Nt) < 00. Then given e > 0 there exists
TeE 5zfl(E, F) such that II T' - Tell <e, M a S;; TiNt) and

dim TiNt):::;; dim T'(Nt) + (a - a).

It now remains only to prove the

3.3.2. THEOREM. If the conditions of Theorem 3.1.4 are satisfied then

k 2n(Tn ; f""m' 15;,) ~ liD * hToll oc '

If D * liTO = 0 there is nothing to prove, so we suppose D * hTO '* O.
The proof involves a sequence of lemmas. For each s E IR define

p s: e-+ IR 2n by

The space IR 2n will be given the max norm.

3.3.3. LEMMA. If L is a subspace of C and dim L = 2n then, for some
s E IR, Ps(L) '* 1R 2n

•

Proof Let fl ,..., f2n be a basis of L and define

( ( i-I,))L1(s)=det J; s+--n .
n 10.J>;2n
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Then A is continuous, ,1(s + n/n) = -,1(s) and therefore ,1(s) =°for some
s E IR. The conclusion of the lemma now follows.

3.3.4. LEMMA. Let F be the linear space offunctions f E[a: n g-~ such
that f is a step function with points of discontinuity contained in those of hT'"
Then dim F = 2n - (2m + I).

Proof Let Xl be the 2n-periodic function defined by

xit) = I

=0

for tE[r~,r~+n/n)

for t E [r~, r~ + n/n), kot-j.

Then F = If"'~n sp{X1''''' X2n}' A direct calculation shows that the matrix
«xl' PI»)1<U;;a,l<l<2n (recall that f3m = sp{pp..., Pal) is of rank a = 2m + 1.
The conclusion of the lemma follows.

3.3.5. LEMMA. Let s be a point such that I(D * hTo)(s)1 = liD * hTolla:' If
f E F and k E If"'m then

Proof Note that (D * hTO)(s + j/n) = ±(-I)J liD * hTolla:' Suppose that
there exists f E F with Ilfllce = 1 and k E ITm such that

Then, by considering the values of the functions D * hTO ± (k + D * f) at
s + U/n)n (j = 0,... , 2n - 1), we find that

S;:(D * hTO ± (k + D * f)) ~ 2n

for either choice of sign. Now f E F and Ilfllco = 1 so f must take one of the
values ± 1 on one of the intervals of constancy (rJ, r~) +n/n) U = 1,... , 2n).
So we choose e = ± 1 so that hTO +ef is zero on one of these intervals. It now
follows from Theorem 3.2.1 (ii) that

S;:(k + D * (hTO + ef)) ~ 2n - 2.

This is a contradiction and the lemma is proved.

3.3.6. LEMMA. Let W=f3m +D*(g";;,n(L CO
)\) and let s be as in

Lemma 3.3.5. Then
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Proof. Consider the composite linear mapping
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The composite is injective by Lemma 3.3.5 and the Chebyshev (Haar)
property of g-m' By Lemma 3.3.4, dim fTm X F = 2n and so the composite
mapping is an isomorphism.

If zEIR 2n and Ilzllco~IID*hToll"" then z=Ps(k+D*f) for some
(k, f) E fTmX F and, by Lemma 3.3.5,

liD * hToll co ~ Ilzll", ~ liD * hTOIl oo Ilfll",·

Therefore Ilfllco ~ 1 and k + D * fEW.

Completion of the Proof of Theorem 3.3.2

If T.t : C---> C is the translation operator defined by (T.d)(s) = f(s - A)
then TJ.. is an isometric isomorphism and TJ..(W) = W.

Suppose that L is a subspace of Cand dim L = 2n. It must be shown that

Now 15(W, L) = 15(W, TAL). So, by Lemma 3.3.3, we can replace L by
TJ..(L), for a suitable choice of A, and we may suppose that Ps(L) #= 1R 2n

•

Now, using Lemma 3.3.6,

15(W, L) ~ 15(Ps(W)' Ps(L)

~ 15(11 D * hTOl1 (IR 2n)" Ps(L»

= II D * hTol1 . 15«1R 2n)I' Ps(L»

= II D * hTOII·

The proof is complete.
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